Langsung ke konten utama

ARTFICIAL NEURAL NETWORK

ARTIFICIAL NEURAL NETWORK

PENGERTIAN

        Cabang ilmu kecerdasan buatan cukup luas, dan erat kaitannya dengan disiplin ilmu yang lainnya. Hal ini bisa dilihat dari berbagai aplikasi yang merupakan hasil kombinasi dari berbagai ilmu. Seperti halnya yang ada pada peralatan medis yang berbentuk aplikasi. Sudah berkembang bahwa aplikasi yang dibuat merupakan hasil perpaduan dari ilmu kecerdasan buatan dan juga ilmu kedokteran atau lebih khusus lagi yaitu ilmu biologi.
   
     Neural Network merupakan kategori ilmu Soft Computing. Neural Network sebenarnya mengadopsi dari kemampuan otak manusia yang mampu memberikan stimulasi/rangsangan, melakukan proses, dan memberikan output. Output diperoleh dari variasi stimulasi dan proses yang terjadi di dalam otak manusia. 
     Kemampuan manusia dalam memproses informasi merupakan hasil kompleksitas proses di dalam otak. Misalnya, yang terjadi pada anak-anak, mereka mampu belajar untuk melakukan pengenalan meskipun mereka tidak mengetahui algoritma apa yang digunakan. Kekuatan komputasi yang luar biasa dari otak manusia ini merupakan sebuah keunggulan di dalam kajian ilmu pengetahuan.
Fungsi dari Neural Network diantaranya adalah:
1.       Pengklasifikasian pola
2.       Memetakan pola yang didapat dari input ke dalam pola baru pada output
3.       Penyimpan pola yang akan dipanggil kembali
4.       Memetakan pola-pola yang sejenis
5.       Pengoptimasi permasalahan

6.       Prediksi


Konsep Neural Network
1.  Proses Kerja Jaringan Syaraf Pada Otak Manusia

   Ide dasar Neural Network dimulai dari otak manusia, dimana otak memuat  sekitar 1011 neuron. Neuron ini berfungsi memproses setiap informasi yang masuk. Satu neuron memiliki 1 akson, dan minimal 1 dendrit. Setiap sel syaraf terhubung dengan syaraf lain, jumlahnya mencapai sekitar 104 sinapsis. Masing-masing sel itu saling berinteraksi satu sama lain yang menghasilkan kemampuan tertentu pada kerja otak manusia.


 
Gambar.1 : Struktur Neuron pada otak manusia

   Dari gambar di atas, bisa dilihat ada beberapa bagian dari otak manusia, yaitu:
  1. Dendrit (Dendrites) berfungsi untuk mengirimkan impuls yang diterima ke badan sel syaraf.
  2. Akson (Axon) berfungsi untuk mengirimkan impuls dari badan sel ke jaringan lain.
  3. Sinapsis berfungsi sebagai unit fungsional di antara dua sel syaraf.

    Proses yang terjadi pada otak manusia adalah:  Sebuah neuron menerima impuls dari neuron lain melalui dendrit dan mengirimkan sinyal yang dihasilkan oleh badan sel melalui akson. Akson dari sel syaraf ini bercabang-cabang dan berhubungan dengan dendrit dari sel syaraf lain dengan cara mengirimkan impuls melalui sinapsis. 
     Sinapsis adalah unit fungsional antara 2 buah sel syaraf, misal A dan B, dimana yang satu adalah serabut akson dari neuron A dan satunya lagi adalah dendrit dari neuron B. 
     Kekuatan sinapsis bisa menurun/meningkat tergantung seberapa besar tingkat propagasi (penyiaran) sinyal yang diterimanya. Impuls-impuls sinyal (informasi) akan diterima oleh neuron lain jika memenuhi batasan tertentu, yang sering disebut dengan nilai ambang (threshold).
2.  Struktur Neural Network

     Dari struktur neuron pada otak manusia, dan proses kerja yang dijelaskan di atas, maka konsep dasar pembangunan neural network buatan (Artificial Neural Network) terbentuk. Ide mendasar dari Artificial Neural Network (ANN) adalah mengadopsi mekanisme berpikir sebuah sistem atau aplikasi yang menyerupai otak manusia, baik untuk pemrosesan berbagai sinyal elemen yang diterima, toleransi terhadap kesalahan/error, dan juga parallel processing.


Gambar 2 : Struktur ANN


    Karakteristik dari ANN dilihat dari pola hubungan antar neuron, metode penentuan bobot dari tiap koneksi, dan fungsi aktivasinya. Gambar di atas menjelaskan struktur ANN secara mendasar, yang dalam kenyataannya tidak hanya sederhana seperti itu.

1.       Input, berfungsi seperti dendrite
2.       Output, berfungsi seperti akson
3.       Fungsi aktivasi, berfungsi seperti sinapsis

     Neural network dibangun dari banyak node/unit yang dihubungkan oleh link secara langsung. Link dari unit yang satu ke unit yang lainnya digunakan untuk melakukan propagasi aktivasi dari unit pertama ke unit selanjutnya. Setiap link memiliki bobot numerik. Bobot ini menentukan kekuatan serta penanda dari sebuah konektivitas.
    Proses pada ANN dimulai dari input yang diterima oleh neuron beserta dengan nilai bobot dari tiap-tiap input yang ada. Setelah masuk ke dalam neuron, nilai input yang ada akan dijumlahkan oleh suatu fungsi perambatan (summing function), yang bisa dilihat seperti pada di gambar dengan lambang sigma (∑). Hasil penjumlahan akan diproses oleh fungsi aktivasi setiap neuron, disini akan dibandingkan hasil penjumlahan dengan threshold (nilai ambang) tertentu. 

    Jika nilai melebihi threshold, maka aktivasi neuron akan dibatalkan, sebaliknya, jika masih dibawah nilai threshold, neuron akan diaktifkan. Setelah aktif, neuron akan mengirimkan nilai output melalui bobot-bobot outputnya ke semua neuron yang berhubungan dengannya. Proses ini akan terus berulang pada input-input selanjutnya.

     ANN terdiri dari banyak neuron di dalamnya. Neuron-neuron ini akan dikelompokkan ke dalam beberapa layer. Neuron yang terdapat pada tiap layer dihubungkan dengan neuron pada layer lainnya. Hal ini tentunya tidak berlaku pada layer input dan output, tapi hanya layer yang berada di antaranya. Informasi yang diterima di layer input dilanjutkan ke layer-layer dalam ANN secara satu persatu hingga mencapai layer terakhir/layer output. Layer yang terletak di antara input dan output disebut sebagai hidden layer. Namun, tidak semua ANN memiliki hidden layer, ada juga yang hanya terdapat layer input dan output saja.

Arsitektur Jaringan Arificial Neural Network





Artificial Neural Network memiliki Arsitektur. Setiap neuron dapat memiliki beberapa masukan dan mempunnyai satu keluaran. Jalur masukan pada suatu neuron bisa berisi data mentah atau data hasil olahan neuron sebelumnya. Sedangkan hasil keluaran suatu neutron dapat berupa hasil akhir atau berupa bahan masukkan bagi neutron berikutnya. Jaringan neuron buatan terdiri atas kumpulan grup neuron yang tersusun dalam lapisan yaitu :
  • Lapisan Input (Input Layer)
          Lapisan masukan merupakan lapisan yang terdiri dari beberapa neuronyang akan          menerima sinyal dari luar dan kemudian meneruskan ke neuron-neuron lain dalam jaringan. Lapisan ini dillhami berdasarkan cirri-ciri dancara kerja sel-sel saraf sensori pada jaringan saraf biologi.
  • Lapisan Tersembunyi (Hidden Layer)
          Lapisan tersembunyi merupakan tiruan dari sel-sel syaraf konektor pada jaringan saraf   bilogis. Lapisan tersembunyi berfungsi meningkatkan kemampuan jaringan dalam memecahkan masalah. Konsekuensi dari adanya lapisan ini adalah pelatihan menjadi makin sulit atau lama.

  • Lapisan Output (Output Layer)
      Lapisan keluaran berfungsi menyalurkan sinyal-sinyal keluaran hasil pemrosesan jaringan. Lapisan ini juga terdiri dair sejumlah neuron. Lapisan keluaran merupakan tiruan dari sel saraf motor pada jaringan saraf biologis.


Keuntungan :
  1. Suatu neural jaringan dapat melaksanakan tugas yang suatu program linier tidak bisa.
  2. Ketika suatu unsur neural jaringan gagal, ANN masih dapat melanjut tanpa masalah oleh paralel mereka.
  3. ANN bias diimplementasikan pada berbagai aplikasi.
  4. ANN bias diimplementasikan tanpa masalah yang berarti

Kerugian:
  1.  ANN membutuhkan “pelatihan” terlbih dahulu sebelum beroprasi.
  2. Arsitektur dari ANN berbeda dari arsitektur kebanyakan microprocessor, sehingga membutuhkan proses emulasi.
  3. Membutuhkan waktu processing yang tinggi untuk ANN dengan ukuran yang besar.








DAFTAR PUSTAKA :







Komentar

Postingan populer dari blog ini

MAKALAH TEORI ORGANISASI UMUM “ORGANISASI PECINTA ALAM”

MAKALAH TEORI ORGANISASI UMUM “O RGANISASI PECINTA ALAM” NAMA ANGGOTA     : ARLINTANIA AGUSTIANAWATY              11114663 AULIA PAMUNGKAS .R                                 11114825 BAYU MANGGARALANA                             12114066 CAHYO BUDI WIBISONO                              12114266 DANA AFINA FADHILAH                   ...

Review Film Wall-E

WALL-E Sutradara Andrew Stanton Penulis Skenario Andrew Stanton, Pete Docter Bintang Film Ben Burtt, Elissa Knight, Jeff Garlin, Sigourney Weaver, Fred Williard, John Ratzenberger, Kathy Najimy Durasi 98 menit Tahun 2008 Film WALL E ini bercerita tentang keadaan bumi yang menjadi tempat sangat tidak sehat karena telah menjadi tumpukan sampah yang tidak dapat di daur ulang karena ulah manusia dan semakin berkembangnya teknologi. Para ilmuan telah mencari planet lain sebagai tempat tinggal manusia yang baru. Akhirnya para ilmuan memutuskan untuk membuat pesawat sebagai tempat tinggal manusai untuk sementara waktu di luar angkasa, karena tidak adanya lagi planet yang sama seperti  Bumi.  Mereka juga menciptakan sebuah robot yang bernama WALL-E yang bertugas untuk membuat sampah sampah bekas dipres menjadi kotak kotak lalu disusun tinggi seperti gedung gedung yang ada di Bumi. Semakin lamanya Bumi ditinggalkan da...

COBIT (Control Objective for Information and related Technology)

Pengertian COBIT COBIT merupakan kerangka panduan tata kelola TI atau bisa juga disebut sebagai toolset pendukung yang bisa digunakan untuk menjembatani gap antara kebutuhan dan bagaimana teknis pelaksanaan pemenuhan kebutuhan tersebutdalam suatu organisasi. COBIT juga memungkinkan pengembangan kebijakan yang jelas dan sangat baik digunakan untuk IT kontrol seluruh organisasi, membantu meningkatkan kualitas dan nilai serta menyederhanakan pelaksanaan alur proses sebuah organisasi dari sisi penerapan IT. COBIT digunakan oleh mereka yang memiliki tanggung jawab utama dalam alur proses organisasi, merea yang organisasinya sangat bergantung pada kualitas, kehandalan dan penguasaan teknologi informasi. COBIT memiliki 4 cakupan domain : 1. Perencanaan dan Organisasi (Plan and Organise) Domain ini mencakup strategi dan taktik yang menyangkut identifikasi tentang bagaimana TI dapat memberikan kontribusi terbaik dalam pencapaian tujuan bisnis organisasi sehingga terbentuk se...